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THE OFF-LINE USE OF A SEQUENTIAL ESTIMATOR

by
T.G. Robertazzi and S.C. Schwartz
Department of Electrical Engineering and Computer Science

Princeton University
Princeton, WJ 08544

Abstract

“The straightforward application of a sequential estimator to

nonlinear regression(curve fitting) prcblems is generally not possible when
good a priori parameter estimates are not available and also when
minimizing the error over a local portion of the data does not in-
sure that it is minimized globally. However, a sequential estimator
may be easily utilized to perform off-line processing in such a si‘
uation. The key is to process the measurements in a random order
rather than the causal order in which they occur.

The off-line use of an extended Kalmen filter is illustrated
in terms of a particular application. This technique is essentially
a seguential version of the Gauss-Newton minimization procedure

with relinearization being performed after each measurement is pro-

cessed. Ficticious measurement noise is necessary to prevent filter

divergence and is included in a very simple manngr.

Computational savings over more conventional iterative minimi-

zation technigues are possible if the functions and partial deriva-
tives involved are sufficier | ly complex to evaluate. But there is

a real question regarding t 2 e>tent to which convergence can be

assured, The results of sin..ations are presented., }
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Chapter 1
The Problem Statement

We will restrict our attention to nonlinear models of the

y©,) = h(e ) + Vi , k=1,2...N (1a)
h (o)) f\w (o Heg 8, e s oo OT0) (1b)

i) £f(8) is a known continuous function that is even and

monotonically decreasing in 6.

ii) 'um 8™ 1 (g)=0

iii) 8 is a function of time and some parameters whose values

are unknown. The c's are also unknown.

iv) n is known.

v) The number of data points available and the signal-to-
noise ratio are such that a curve fitting technigue, that

is estimating parameters by minimizing some error criteria,

is viable.

For the purposes of this paper, it will also be assumed that

2

vi) Viil a Gaussian random variable ~ n(o.oz). o known.

vii) 8y = S(tk—To), where S and To are unknown scale and loca-
tion parameters, respectively.
One wishes to estimate the parameters, °1'°2"'°n's T

0°
This is a nonlinear (in the parameters) optimization problen.

For off-line processing, there are several well-known iterative mini-

A NN 3 ¥ ot S Bt



mization techniques . (IMT) such as those of the descent type, that

are obvious possibilities.

Moreover, the nonlinear model in qQuestion is a ‘separable’ model:
its parameters can be separated into two groups, those which appear
linearly (cl.cz.c3) and those which appear nonlinearly (S.To). This
class of nonlinear models is significant both because of the wide
variety of applications in wh‘ich it appears and because it's struc-
ture can be exploited in off-line optimization to achieve computa-

tional efficiency [1l].

We will first, however, investigate the suitability of sequen-
tial estimation of the parameters. By 'sequential estimation' is
meant calculating an updated estimate as each sampled measurement of
y(®), that is y(Ok), arrives. This calculation is made using only
the previous estimate and the current observation.

: The reason for considering sequential estimation is that in at
least one application, the estimation of ship movement by means of
1 a fixed sensor measuring magnetic field intensity, the signal can !

arrive over a period of a minute or so with the spacing between

sampled points being on the order of tenths of a second. Not only
may enough time be available for real time sequential processing but
it may also be desirable to obtain reasonably accurate estimates as

early as possible,




)

Chapter 2

Some Dijfficulties With Seguential Processing

The model of (1) can be put in the Kalman estimation framework
with the state vector, zk. comprised of the parameters to be esti-

mated. Then:
Ea "X

Yy = b)) vy

(2)

where there is no system noise present.

Nonlinear seguential estimators, such as the extended Kalman
filter, are most successful when an initial reference “trajectory",
about which one can linearize, is known to a high degree of confi-
dence. ‘Por this discussion and for the latter examples we will

assume that initial nonlinear parameter estimates accurate to about
a factor of tw9 are available.
The main Qifficulty that is encountered in attempting to se-

quentially estimate the parameters of (1) is that minimizing the

error (between the observations and those predicted using the esti~
mated parameters) over a local section of the waveform does not
quarantee a good fit over the entire waveform.

In particular, for a local section of the waveform many sets

of parameter estimates will produce almost equally good fits.

To illustrate this point, consider the model of (1) with

-2
£0,) = o X

8§ = 014
Th = 200,
gf -1.0

2 = 1.0

62 w 1074

Re -3




“Trigl 1. is @ plot of y(0 ).

PFor different values of (s,ro). the least square estimate of

(c,c,,¢,) were calculated using the noise corrupted waveform of &

FPig. 1. The sum of the square errors between the y(lk) and the

model using each such set oz'(g,éo.él,éz.éa) was also calculated.

Because of the least square error.criterion. the linear parameter s

estimates, 51.32.@3. are a function of the chosen (g.&o) Thus a

three-dimensional plot of the error versus various values of (%,%o)

is informative. t
Méreover. Gdiub has established that there is a direct relation-

ship between the extrema in this plot and those in the space of all

the parameters.

The theorem, which is proven in Golub [l]), deals with sguare
error optimization applied to separable models. One can define two
error functions. The first ei(ﬁ), is the error as a function of
both linear and nonlinear parameters. Now let x be partioned into
linear and nonlinear parameters, 3?-[3:IN.3:L]T. The second error
function, eg(QNL). utilizes the fact that for a given nonlinear para-
meter estimate, gﬂL‘ the least sguare estimate of the linear para-
meters, 2LIN Ls is unique. Since the linear parameter estimates are
then a function of the nonlinear parameter estimates, 'g(sﬂL) is a
function~6f only the nonlinear parameters. |

For our purposes, the theorem is relevant as it establishes
that for a small enough neighborhood in the nonlinear parameter

space, 3, where the matrix of basis functions has constant rank (see

Appendix B) the following are true:
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i) if QNL is a critical point (or global minimizer in @) of eg(ﬁuL).

then iJN Ls,ﬁgLfris also a critical point (or global minimizer

for §,,¢'2) of e} 2.
11) if @,y 185 T is 2 global minimizer in ef 2@) for §,¢.0, then

xNL is a global minimizer of ez(ﬁNL) in 0.
Practically, (i) implies that a local minimum found in one of the

previous error surfaces, which are functions only of the nonlinear

, :rameters, would in fact be 2 minimum in the space of all the para-
meters. Thi&é is the space in which the RSKF, as well as iterative

minimization techniques, would operate.
In particular, several plots were made, Figs. 2-5, using the

first 100,200,300 and 400 sampled values of the waveform, respec-
N

tively. 7Phe error was normalized by & y (0 ) and '1°910 of this
) k=1
error was actually plotted so that the z axis is a logarithmic

scale and a peak corresponds to an error minimum.

As one might expect, with only the first 100 sampled values
accesible (Fig. 2), the error surface is quite flat. There is no
clearly optimum set of (S.Zb). As more data is available (Figs.

3-5), the optimal (S.zo) does indeed develop at about (S=,014,

' ronzoo). while local minima decrease in significance.
» A similar set of plots (Figs. 6-9) were made using
f(ﬂk) = (l*ei)-s/z. This function arises in a particular applica-
tion that is explained in some detail in Chapter 4. The parameters
’ of (25) were used in generating these plots. With only 100 sampled
values available, once again the error surface is rather flat.
This situation especially mitigates against the use of esti-
¢ mators that implicitly assume that the current parameter estimate

adequately summarizes the information concerning the parameters
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The problem with a sequential estimator that processes the

) data in its causal order is that during the early sections of the

REPSNINE ¥ PSP C R S

waveform there are many parameter values that provide locally al-
most egqually good fits. Then, when the filter is processing data

D in the latter section of the waveform it again has no information

available to it concerning the fit in the other (earlier) parts of
the waveform.
’ Recursive least sguare estimation of only linear parameter models
does not suffer from this problem as the estimate at any time, tyo
is the least square estimate for all measurements received up till

> ¢ Nonlinear estimators generally do not enjoy this property.

k°
An extended Kalman filter, for instance, maintains an error co-
variance matrix, Bk' whose trace is non-increasing - (in the absence
» of system noise). Practically this means that a good fit during the
e2rly part of the waveform leads to unrealistically low errow-covariance
ectimates. These represent such a high degree of assumed confidence
P .. the current estimate that when more recent measurements show a
lack of fit, through the growth of the residuals (innovations), the
gain is set small enough to ignore them and the filter ultimately
diverges.
Before continuing it should be noted that the unsuitability of
sequential estimation has been discussed only for a particular type
of model and only within the limits of our earlier definition of

‘sequential estimation'. Tenney et.al.[2), for instance, obtained

good results for a somewhat related model through a linearized ver-

sion of the model egquations that depended only on a single nonlinear

parameter, thus allowing the use of parallel filters. Also, a real

time estimator is possible if it stored all or some representative




portion of the data received up till time t and its estimate de-
pended only on this data, not the previous estimate. The diffi-
culty here, though, is computational,

While a simple sequential estimator may be inappropriate for
real time processing, the next section will show that %t is possible

to effectively utilize it in an off-line manner.




.Chapter 3
Off-Line Use of a B e al B
3.1 1Introduction

The main impediment to the on-line implementation of a sequen-~
tial estimator, in the context of the model (1), is that for the
most recent estimate of the parameters, the error is only evaluated
over a local section of the wavcfgrm. While one would like to
evaluate the error over the entire waveform, this can only be done
once the data has been completely received, that is, off-line. 8Since
off-line processing may be justifiable in some applications, it will
now be considered.

Given samples from the entire waveform, how can a sequential

estimator, such as the extended Kalman filter, perform off-line pro-
-eing? The simplest way would be to process the measurements not
1), their causal order (yl.yz.y3...) but in some random order (y37.
YZOS'YBO"’)‘ An obvious possibility is equiprobable sampling
without replacement. The advantage of such a randon sampling esti-
mator is that over a number of iterations the filter obtains a mea-

sure of the error over the entire waveform.

Again, the three dimensional error plots of Chapter 2 can be
used for il%uotrative purposes. Figs. 10-13 were generated with
£(0,) = e °k and the parameters of (3). Eowever, the measure-

ments were randomly sampled (without replacement). Thus Fig. 10 is

based on the first 10 randomly selected measurements, Pig. 1l uses
an additional 30 measurenments for a total of 40 randomly selected
measurements and so on.

What these plots indicate is that in contrast to Pig. 2, even

with 10 random measurements, there is a clearly global optimum.
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Additional measurements, of course, improve its "visibility",
Henceforth, an extended Kalman filter which processes pre-
recorded measurements in a random order will be referred to as a

random sampling Kalman filter (RSKF),.

3.2 Relation to the Gauss-Newton Technigue

There is a close relationship between the extended Kalman filter

§ B for (2) and the iterative and off-line (batch) Gauss-Newton optimiza-
tion technique. Both express the measurement nonlinearity as a

first order Taylor series expansion so as to obtain eguations that
are linear in the state/parameter deviation (dxi=5k+1-;k). Linear

) solution methods then‘can be applied.

It is well known that if an extended Kalman filter does not
relinearize (continue using the original x estimate for generating
basis functions and partial derivatives), after each measurement :
is processed, it can be made to pro&ﬁce results identical to those
of a single Gauss-Newton iteration [8)]. That is, without relinear- h
ization, an extended Kalman filter is a segquential version of the

Gauss-Newton technique. It follows that the RSKF described previously

Ciis

can be thought of as a sequential version of a Gauss-Newton iteration q
where relinearization is performed after each measurement is process-
ed.

While such relinearization offers the potential for faster con-

vergence (8], there are often divergence problems associated with
extended Kalman filters. Furthermore, for certain models the !
filter may converge to pcints other than the convergence points of

the off-line (batch) technique [8,12]. Steps to mit igate sgainst

the former @ifficulty are discussed in sec. 3.4. The remainder
of this section is devated to a more detailed exposition of the

previous points.

ot s g v s e T o
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In the Gauss-Newton approach one starts with N measurement
equations modeled as
Y=2 X% (4)
where each term is a Nxl column vector and the statistical properties

of ¢ are assumed to justify a least squares fit. Expanding the

nonlinearity one has: ‘
gl |
r=3 Q)+ [ (s)
p-4  *
The least squares estimate of the deviation, axk-gkﬂ.gk

follows from:

- 2g @)
minll ¥ - ¢(},) - ——5-*-
il 2 - §,) - =5

X

2
&x ” (6)

x=2
Ben- & = &
T - -1 _~ .
B B B, < l | o)
=\ 3 ox (— - &(&)2'8* 7

It should be noted that in practical use the correction term,

-d:‘-k’ is multiplied by a scalar which is optimized during each
iteration [3]. We are not considering this.

As was mentioned above, if the x used for generating the
measurement function matrix, i(;). and {ts partial derivatives is
held fixed (no relinearization), then &, above can be arrived at

through a set of sequential estimator equations. These are de-

rived in the same way that the recursive least sguares algorithm
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can be derived from the off-line (batch) least squares solution

f13]. ©One obtains:

B + K i vyin QOB GO0 4, - &)
] ' s -1
%, BE Q) E &) @0, ®)

Bo™ @K B @B,

where h, (x) is the measurement function from (2) and R, (x) is

the nxl vector of partial derivatives of hi(;). The subscripts

on the gain expression, X and i, represent the iteration and ran-
domly chosen measurement, r:espect::i.ve].y.ll_"t:.L is the measurement noise
covariance matrix and gk is the error covariance matrix.

The 2k+1 of (8) can be made arbitrarily close to the & re-
sulting from a single iteration of (7) on the same k+l measurements
that the seguential estimator (8) has processed if the seqguential
estimator is properly initialized. This is usually accomplished by
setting the initial eovariance matrix, 20. to a diagonal matrix
with srbitrarily large diagonal terms [13,14]. While in linear
sequential estimators KO is often set at zero, this is not appro-
priate in the nonlinear case where the measurement function partial
derivatives are functions of x. The initial estimate of x is in-
stead used.

The above sequential estimator equations correspond to the
“linearized” filter of Gelb [15] for the model (2). That is,

&, is the reference estimate (trajectory) and the filter equations

s e i piott i

-
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are linearized about it. If the equations are relinearized after

each measurement QO-AR). the last term in the equation for
‘kﬂ drops out and (8) represents the extended Kalman filter

equations for (2).




3.3. The Correction Vectors g;x
How do the correction vectors, g;k. generated by the RSKF
compare to those produced by one of the standard fterative descent
techniques?
In an iterative descent technique, the vector of all para-

meters, at the k+l1 iteration, is:

2k+1 -2 - a!jgk)!ﬁ(ﬁk) (9)

where !E(gk) is the gradient of the error function, 1}2k) is a
matrix depending on the particular descent technigue employed and
the scalar a is chosen small enough to assure convergence. For a

sguare error criterion.
N

VEQ) =¥ by =hy (gkn’

z
j=1

N (10)
= -2 521&5 (gk)[yj-nj (gkn

where gg(gk) is the matrix of partial derivatives of hj(gk) with

respect to the parameters.

Thus the iterative descent technique is
N
= + z '.T -
B 28+ 208 BTG Iyyny @) (11)
while the RSKP {s

Bon = &+ BB @0 m T G007 8" @) v, @)
Ben = G-Ky, o8] @))R,

(12)

Q
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In the RSKF estimation equation, (12), the magnitude of the
correction vector, !%+1f£k. is inversely proportional to a measure
of the uncertainty due to both the measurement noise and the un-
certainty in the current estimate. The matrix gk weights the cor-
rection vector components so that directions corresponding to
greater uncertainty are favored. Most importantly.'the vector
summation operation of 'improvement' vectors.‘gi(gk), weighted by
the pointwise errorm, (y;-h, (gk)). has been replaced in the RSKF

by only a single such term.

What can be said about this approximation as it affects the
RSKF? By itself, minimization of the error at a single point
(given more than one linear parameter) is an undetermined problem.
The intention is that over a number of iterations, that is on
average, the direction of the correction vectors will be towards
.ecreasing error, with respect to the error surface of all the
available measurements.

At each iteration of the RSKF the single measurement that is
processed leads to a correction vector. Depending on which measure-
‘gent is randomly chosen for processing, different correction vectors
will result. It might initially be believed that they would all be
roughly of the same direction and magnitude but this is not
necessarily true. Individual iterations of the RSKF may produce
estimates worse than the previous estimates in spite of a trend of
reduced error over a number of iterations.

One might also suppose that at least close to the error mini-

mum, the possible correction vectors would have similar characteris-
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tics. While this is true to some extent, very close to the error
pinimum it becomes important to appreciate the effect of the mea-

surement noise in the RSKF equations.

There are two sources accounting for the pointwise errors:
yl-hl (&() ’ Yz-hz (&k, gocccece YN-hN (2‘()

One is the measurement noise. Even for the optimal g*; the
differences are non-zero. This can be thought of as a random error.
The second is due to using an estimate of the parameters that is not
the optimal estimate. This can be thought of as a systematic error.
Such concepts are discussed in the regression and filtering litera-
cure (11].

If ones' estimates are far from the optimal parameter estimates
this second source of error dominates. But close to the optimal
parameter estimates the measurement noise is more appreciable. As
the optimum is approacted, the pointwise errors above take on the
statistical characteristics of the measurement noise. That is, they

are approximately zero mean Gaussian random variables of variance

02.

Since the correction vectors are proportional to the pointwise
errors, close to the optimum they will be pointing 180° away from
the direction they would have, had there been no measurement noise,

8lmost 50% of the time  (See Appendix A). Also the correction

vectors' magnitude becomes more dependent on the measurement noise.

O

e rrre:
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This in itself is not fatal to the RSKF's operation. The
same sort of statement could be made concerning clearly optimal
linear estimation procedures. It is mentioned to show the effect
of the measurement noise on the RSKF's correction vectors.

Finally, with a qualification, the RSKF is as likely
to converge upon a local minimum as any iterative descent
technique. The qualification is that because the RSKF
does not move strictly in the direction of decreasing error,
it conceivably could leave the region of a local minimum.

Conceivably too, an unfortunate choice of correction vector

could place the estimates close to a local minimum.

3.4 the RSKF with Ficticious Measurements Noise

In Chapter 2 it was pointed out that if the measurements are
causally processed through on extended Kalman filter, divergence
»ill occur simply because many values of parameter estimates provide
almost equally good fits. While random sampling eliminates this
difficulty, divergence can still occur for other reasons.

Divergence in extended Kalman filters occurs when error sources
that are unaccounted for do, in tealiiy. exist so that the error
covariance matrix elements take on unrealistically low values. One
very simple modification of the filter equations, described below,
has been used with same success in practice to overcome this problem.

A first order aspproximation of the effect of uncertainties in

the parameter estimates upon the measurement equation is:

y; = by @) 2y ) —&ﬁ-uz toenayy (13)
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This is the measurement model used in both Gauss-Newton

optimization and the extended Kalman filter where
By - B = Ax (14)

and one can linearly solve for g;k and hence X 41 {3).

However, proceeding with the philosophy used in Tenney [2],
g;k can be considered to be a zero mean Gaussian ranaom vector whose
covariance matrix is the already available parameter estimated co-
variance matrix, gk. Assuming that the ficticious measurement noise

is independent of the actual measurement noise. the new measurerent

-noise covariance matrix is:

Y =R +EH] (g_k)p,a:'”(gk) (15)

2ut the second term in the sum is already available in the Kalman

denominator so that one has:

K1 = BET @) 128 R8T @) + &) as)
This modification can be generalized. Consider the gain denominator
to consist of two measures of uncertainty, one due to the measure-
ment noise and one due to the inaccuracy in the current parameter
estimates. The nominal weighting of these two Quantities is 1:1.
A weighting of 2:1 as indicated in (16) corresponds to the statistical
model of (13). But certainly other weights are possible. That

is, we might use

Be,o = BET @) (0,8 doRET &) +27 ar
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where a, is suitably chosen.
As a, is made greater than one, the rate of filter convergence

decreases as the filter behaves more cautiously, believing an
increasing amount of uncertainty is present in the measurenents.
Specifically, when the RSKF's estimates are far from the optimal
A
. L} ] R'
estimates, H: (Kk)Pi H! (3*) should be much greater than R, so that

the magnitude of the correction'vector is 1/ax of what it would be

had ak=1.

Examples of the filters' performance using different values of

a, @re presented in Chapter 4.

Although a weight of ak=2 corresponds to the statistical model
of (13), one should not conclude that this is the best possible ay
setting. Rather the model of (13) is a heuristic device for adding
an (not necessarily minimal or even sufficient) amount of ficticious
measurement noise in order to prevent divergence.

The statistically unsatisfactory nature of (13) is two fold.
First, even though the ficticious measurement noise random variables,

g;k and the parameter uncertainty, ﬁkﬁzk. are the same random

T Y v e < - -

i




varisbles, in going from (15) to (16) we implicitly assume that

they are uncorrelated. Secondly, the effect of parameter uncertain-
ties in the partial derivative evaluations has not been included.

The former point can be demonstrated explicitly using
Schmidt's [16] model for including the effect of parameter uncertain-

ties in the measurement equation:

Ml [ay_ (t)
Y s ! X ol ¥ +qlt
Eell™ gy

y=H (t)x + G'(t)y = q(t)

Ew®) =¥ E(g)s0 r

k E()=0 E(@) =0
| € =Elx-Rry") P = ElG-§) x-80F)

f

i

: Here y,x and v are the deviations from the nominal estimates
of Y,X and V. These are the measurements, states (parameters) and
uncertain parameters, respectively.

The resulting gain and covariance updating expressions are:

-1

T R T+ g'w g™ B vf

JE'RBE'+B'CG'"+6'CH

3

P= (Z-KH)P - KG'

These reduce to the expressions for the gain in (16) snd the
covarjance in (8) if C= 0, W= P and 8'sE'., These are the
assumptions under which Schmidt's model is equivalent to (13).

We also mentioned that the effect of parameter uncertainties

in the partisl derivative evaluations has not been included. °




Accounting for it using a measurement noise formulation is not

directly possible. If one expands the partial derivatives in the
linearized measurement equation (13) in a Taylor series about the ;
current estimate, the first order terms in the series (which are
second order partial derivatives) are multiplied by g;k. However,
as discussed in sec. 3.2, the extended Kalman filter implicitly
assumes this term to he zero. To be more specific, it assumes
dx (k+1/k), that is dx at k+l giPen k measurements, to be zero and
linearly solves for dx(k+l/k+l).

Considering Q‘k to be a random variable, as in sec. 3.4, be-
comes statistically involved. The following quadratic term must

then be added to the linearized measurement equation
T 3H' Q)
* T

where ggf comes from the partial derivative expansion and g;k from
the measurement function expansion.

Whether one considers these to be the same random vector
(n(O,gk))or uncorrelated random vectors with identical distributions, a

utilizing the resulting non-Gaussian distribution is a problem.

3.5 The Matrix zk
In the previous discussion of the RSKF little has been said

about the matrix gk except that it favoradbly weights correction vec-
tor components towards the region of greatest uncertainty. It has
no strict statistical meaning in the RSKF, It arises naturally in
linear Kalman filtering since it and ﬂk describe the statistical
diltribution ©f the current parameter estimate 8s being !(&‘ 2*).

uhcn ‘the system and obser ation noise is sdditive and Gaussian.




i For nonlinear filtering using an excellent reference trajectory,
one might hope that gk is still meaningful. The often-encounted
Kalman filter divergence indicates that this is not necessarily so.

One is attempting to represent the non-Gaussian conditional distri-

bution function (the estimate distribution conditioned on the data
received up till the present iteration) with only two moments. 1In
the problem described by (1), a good reference trajectory is not
assumed to be available. This makes matters worse. One's only

hﬁfe ig that after an initial rapid convergence to a neighborhood
near the optimum, the conditional density is asymptotically Gaussian
through a central limit type operation. The empirical success of
the 'ficticious' measurement noise suggests that considering Q;k as
as N(O.gk) may indeed be meaningful., The random sampling will also
tend to eliminate correlations in the error (Que to inaccuracy in the
current estimate)between samples that are adjacent in real time.
However, this should be considered as vague speculation. At this

time we can say nothing definite.

3.6 Computational Considerations
Why would one employ an estimator such as the RSKF instead of
one of the well known iterative minimization techniques? One rea-

son might be computational.
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This involves the difference between a RSKF “"iteration” an& an
iterative minimization technigque "iteration". During the former
only 8 single pointwise error evaluation and partial derivative
matrix calculation is made. In the latter type of "iteration“,
such quantities are calculated for all of the available data.

Even if the latter algorithm converges in many fewer of its
"iterations", each one involve; many more nonlinear function evalua-
tions. This computational cost could be significant.

Furthermore, the RSKF may be stopped when sufficiently accurate

estimates are obtained. Although the waveform measurements need be

stored off-line, not all of them need be processed.

To examine the question of computation time in some detail,

let:
N = the number of measurements,
IMT = jterative technique (I.M.T.) of the form (8).
o = the number of computational units necessary to evaluate

hi(ﬁk) and EiT{gk)‘ Benceforth, a computational unit is
assumed to be a single multiplication.

MIMT'MRSKF = the number of computational units necessary to perform
one iteration of an IMT or RSKF, respectively, dis-
regarding MF/D and logic costs (program loops, etc...).

IIMT'IRSKF = the number of jterations for an IMT or RSKF, respec-
tively, to sufficiently converge.

Crmr trsxr ™ the time necessary for each of the two techniques, to
converge, expressed in computational units.

It will be assumed that it is sufficient to compare only the
number of multiplications and function/derivative evaluations. 1In

a first analysis logic costs will also be neglected, We have:
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tymr = Iymr (NMpp + Myyy)

1
tpexr ™ Irsxr® MF/p * Mrexr! (1s)

How large must I,., be before the RSKF becomes computationally

more economical? This can be found by letting tyyr = trsxr’ for

e * Brexr) (s

(N-MF/D + MIMT) RSKF

The simplest iterative technique ef the form (8), is steepest

descent (j_,_(gk)--l ). BHere

N-MF/D >> Mywp (20)
and we will assume
>>
"rsxr > M/ (21)
Igskr = N
Then (19) reduces to
M
L (22)
F/D

The inclusion of logic costs will increase Myur and Mesxr though
the increase in the latter will be most significant both because of
the more complex computational structure of the RSKF and because
Mpckr 18 @ larger fraction of (Mr/b + “asxr’ than M; . is of
KN°MF/D + "IMT)' assuming that the inegqualities of (20) and (21)

are true. 1In Chapter 4 the inclusion of logic costs in a 5 parameter

problem will be seen to increrse "nsxr by a factor of three.

WO TR ¢ s o e
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Asymptotically, as N and/or "P/D increases, the RSKF is favored.
The asymptotic effect of an increase in the number of parameters ir
more involved, not only because the convergence behavior may be af-
fected, but also because the increase in MF/D and My will be
favorable to the RSKF while that in Mpsxr Will not be.

There are a number of other computationally related issues that
involve the rate of convergence and accuracy of the estimate one
obtains.

Numerically, the classical Kalman filter equations are known
to be unreliable (4]. Our simulations have been obtained using
double precision on an IBM 370 machine. There is no conceptual dif-
ficulty with utilizing the more recently developed Kalman filter
formulations with improved numerical properties [4] though addi-
tional computation is involved.

Specifically, the term that is invertedin (17) does not appear
in the inverse form of the Kalman filter equations, the square root
ariance filter or the square root information filter. Because of
this the use of the scalar a,. as in (17), is not possible. How-
ever R can be replaced during each iteration with the increased 59’“
2

of (15). The evaluation of R"®"

requires about n” multiplications,

where n is the number of parameters.

Since a random sequence determines the processing order, one
might ask if there is an optimal order. Could the randomly selected
samples be concentrated in certain sections of the waveform that
contained the most information about the parameters sc as to achieve

a faster convergence? Alternately, given the waveform, what are

the sampling locations which provide minimum variance estimates?




Unfortunately, expressions for the trace of the error covariance

matrix, while independent of the parameters for a linear estimation
problem, do indeed depend on the parameters to be estimated for non-
linear models.

Therefore, this approach could only be viable if very good a
priori estimates of the nonlinear éarameterc are already available.
It could be employed once the filter had sufficiently converged,
but there is a real guestion concerning the cost of the extra com-
putation needed to minimize the trace expression.

Another point is that if it is possible to process only one
measurement per iteration, it is also possible to process several
simultaneously during each iteration. This could reduce the number
of iterations regquired for convergence but the additional measure-
ment equations increase the Kalman filter's computational complexity.

Conceivably one could also process measurements that had already
been used. In the simulations presented in the following chapter
the RSKF made only a single pass through the data. While this
seemed adequate, additional passes through the data could have been

made in order to refine the estimate.

o e st mim et e ke
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Chapter 4

An Appljcation
4.1 Introduction

Sensors are available that are capable of measuring a ship's
magnetic field intensity. Sunahara [5] has considered sensors
placed under a harbor entrance for traffic control purposes. Air-
craft, engaged in anti-submarine activity, may also citry such
sensors. In this case, the submarine is assumed stationary and the
sensor moves in a straight line relative to it.

The magnetic field of the ship can be modeled as originating
from a magnetic dipole [6]. The field intensity measured by the sensor
can in turn be approximated by some "suitable” deterministic func-
tion. Sunahara, who was interested primarily in detecting this
"signal” in the presence of substanial noise, modeled the field
intensity waveform as a single cycle of a sine function of unknown
implitude and phase. Another representation for the field

intensity, in a simplified form is:
2,-5/2 2
h(e,) = (1+0)) (egtc,y0,+ca0,7)

(o s(tk-ro)

(23)

This is somewhat representative of other tracking models in that
the location parameter, To. represents the time at which the
closest point of approach (CPA) between ship and sensor is

made and the scale parameter, S, is proportional to the velocity

of the moving object and inversely proportional to the distance

between ship and sensor at CPA.




One artifice employed to insure a satisfactory filter perfor-
mance was to replace S with e’ and estimate . This replaces the
physically constrained §(8»0) with the unconstrained B (otherwise,
the filter may converge to a8 local minimum with a negative scale

estimate). The variance in (25) is that of B.

4.2 Computational Comparison
Based on expressions for the computational requirements of

Kalman filters appearing in Mendel's work {[7], one finds that for

a five parameter, single measurement eguation problem, approximately
600 computational units are necessary for multiplication and 1500

if logic costs are included. (A logic operation is assumed to be
ten times faster than a multiplication.) The minimum number of com-
putational units necessary to evaluate (23) and the associated par-
tial derivatives is about 64 (see Appendix C).

Assuming that MF/D >> MIMT and 1 = N = 40Q the number of

IMT
IMT iterations at which the RSKF becomes computationally competitive

is:
M + MTE

if logic costs are included.

4.3 An Example
Several simulations were performed using an IBM 370 with double
precision. The classical extended Kalman filter equations were

used with the parameters:
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Actual Initial Estimate nitial Var ce

s = .016 .030 2.4

TO = 200. 250. 1600.

¢ = .1 4.0 160.

c = 1.0 1.9 1.0

2 (25)

C3 = .15 -400 16.0

0l = 1074 ' known

N= = 400 known

4.3.1 The Weight a = 2.0
Figs. 14-20 illustrate the operation of the RSKF with the weight
in the Kalman gain denominator set equal to two.
Fig. 14 illustrates the received waveform and the waveform cor-
responding to the initial parameter estimates.
Fig. 15 is a plot of a measure of the error of the parameter

estimates. Specifically, the following quantity is plotted for each

iteration.
A
le,-8.1  Je,-2.] e8] T -T
E AR e SR 22+'33+|S-9|+|o °|l 26)
5 ¢ c, c, S To

Fig. 16 is a plot in the nonlinear state space of the conver-

A
gence of S and QO‘ It can be seen that the correction vectors gen-

., erally decrease in magnitude as the optimum is approached. Further-

more, although the general trend of the trajectory is to approach

the optimal parameter estimate, it can be seen that individual cor-

. rection vectors often do not point toward it. This leads to a number

of "knots” and "loops” in the trajectory.

Fig. 17 is 8 plot of the normalized covariance trace:

e " e
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L P, 1,1) B (2,2) P(3,3) P (4,4) P (55

< + + + + ] (27)
S Po(l,l) P°(2,2) Po(3,3) Po(4,4) 9015.5)

Fig. 18 displays the filter innovations (y;-h, Qk”' They
seem to settle out at about 100-150 iterations. This is consistent
with Fig. 17.

Fig. 19 displays the Kalman gain denominator. Since the mea-
surement noise covariance component of the denominator is at about
zero on the scale of the graph, one is seeing only the other com-
ponent, the uncertainty due to the uncertainty in the curren para-
meter estimate. This term appears to have a ‘spiky' nature. It

generally decreases in amplitude.

Finally, Fig. 20 is the received waveform along with the wave-

form corresponding to the final paramater estimates:

mean variance
S = .0160 .20420°%
T, =  201. .16
-4
e, = .102 .30+10 (28)
e, =  .999 .30.10"%4
c, = 145 .2301073

These may be compared to the actual parameter values in (25).

The next eight plots (Figs. 21-28) illustrate the population of
correction vectors that the RSKF randomly samples from. Each plot
corresponds to a particular iteration of the previous example
(lk=2.0). The common point shared by all the vectors is the current

estimate in the nonlinear state space. Each vector corresponds to

the particular correction vectsr that would result if one of the
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400 measurements were processed during the iteration.

Each plot shows 400 possible correction vectors. However, this
is merely for illustrative purposes. In actual operation the RSKF
samples the measurements without replacement. This means that the
size of the sample population decreases by one after each iteration.

The most important feature in these plots is that the possible
correction vectors generally do not point in the same direction.

Also, as the processing continues, the fluctuation in the mag-
nitudes ot . _acent correction vectors tends to increase. This is
due to the increased effect of the measurement noise on the correc-

tion vector magnitude (and directjon if there is a sign change).

4.3.2 Suboptimal Weights

The next several plots will jllustrate the effect of the use

of different weights in the Kalman gain denominator.

Figs. 29 and 30 are plots of the normalized covariance trace
when ak=4.0 and lk-B.O. respectively. These may be compared to
Fig. 17 where ak-Z.O. The slower convergence that results from in-
creasing the weight beyond 2:1 is evident in the longer time it takes

for the trace to converge to zero. i

The filter's performance with ak=1.0 is illustrated in Figs.
31, 32 and 33, Fig. 31 shows that a reasonable fit has not been
achieved. 1In Fig. 32 it can be seen that the trajectory of the non- é
linear parameter estimates has failed to correctly converge. As |
previously mentioned, the problem is that of nonlinear filter diver-
gence. The filter takes an overly optimistic view of the accuracy |
its estimates. The very rapid decrease in the normalized covariance

trace of Fig. 33 in comparison to that of Pig. 17 confirms this.
(
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Chapter §

Lonclusion

An application of off-line processing by means of a sequential

estimator has been presented. The technique is essentially
% a sequential version of Gauss-Newton optimization with ficticious

measurement noise added to prevent filter divergence.

The RSKF described does not implicitly make use of the form of
the model (1), its separability and most of the associated assump-

tions. Therefore, it would appear to be possible to use if for

L p

other non-linear sguare error regression problems and, in particular,
for curve fitting. Such a method would seem to be most appropriate
in situations reguiring fast off-line processing.

However, computational savings if they are possible at all,
will depend on the complexity of the model being employed. Also,
the extent to which convergence can be guaranteed has not been suf-
ficiently delineated. Furthermore, the numerical properties of the

filter equations are crucial to the feasibility at their implemen-

tation in a limited precision computer.
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Appendix A

At first glance it may appear that the well known optimization
maxim, that one's estimates should proceed in a direction of non-
increasing error, is being violated. The confusion apparently arises
because a distinction must be made between the error surface based
on all the data that will eventually be received and the error sur-
face based on only the data received up to the point of the current
iteration. There is no reason to think that ones' estimate should
always be moving toward an optimal point on an error surface that
depends on data not yet received.

To illustrate this, consider the sequential estimation of the
stationary mean of a sequence of N i.i.d. Gaussian random variables,

YR' k=102.l.N|

-1 1
her = 5 &+ kv @)
A 1
Berr = B+ ey (2)

At each iteration §k+1 is clearly the optimal (say sguare er-
ror) estimate on the error surface of data received so far. However,
as ﬁk converges toward the actual mean, (2) is adding what is almost

Y3
a zero mean (actually . ) Gaussian random variable to the

current estimate in order to produce the updated estimate.
Therefore, with respect to the error surface of all the data

to eventually be received, the estimate *k moves awaysfrom the op-

timum point of that surface a percentage of times that asymptoti-

cally approaches 50%. Put another way, the current estimate moves
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away from the final estimate almost as many times as it moves

wards it.

to-

{

1
1
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Appendix B

The rank condition can be violated in models such as

Bltk thk Bmt

k
y(tk) = c,e + c,e tootc e

The problem is that columns in the matrix of basis functions
may become linearly dependent, reducing the matrix rank. 1In the

A A
above model this will occur if Bissz

B, t B.t B t
e 1" e 271 e ® 1l
B, t B.t B t
e 172 e 2 2 el 2
. (Blooooosm) =
B.t B.t B t
Lé l™n e 2 n e @ N

In the Anderson model the basis functions are linearly indepen-
dent‘for any g and go. and so, analytically, present no problem.

Under certain circumstances though, columns could ‘numerically'’
resemble each other. For instance if the location parameter esti-
mate and/or scale estimate are gquite far off the columns in the

matrix of basis functions will assume values close to zero.

j




Appendix C

The number of computational units (multiplications) necessary
to evaluate the model (23), and associated partial derivatives, de-
pends on how much extra programming complexity one is willing to
accept.

To establish a lower bound, one should note that the function
evaluation (and thus linear parameter partial derivafivec) requires
at least six multiplications. The evaluation of the nonlinear para-
meter partial derivatives each require about 18 multiplications.

In addition, a quantity must be raised to the 2.5 power. This
is egquivalent to one multiplication, one logarithm and one expo-
nentiation. Nonlinear function evaluations are approximately
equivalent to eight to twenty multiplications, depending on the
accuracy desired [9],[10].

Assuming that ten multiplications per nonlinear evaluation is
a good estimate, the time required to evaluate the function in qQues-

tion and its associated partial derivatives is equivalent to per-

forming 64 or more multiplications.
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